Reflectivity Diagram Calculations: Flat Bottom Holes (FBH)

Scenario 1: Table 1: Scenario 1 Calculations (Back Wall Echo Reference)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe Diameter (mm)</td>
<td>d_c</td>
<td>24</td>
</tr>
<tr>
<td>Probe Frequency (MHz)</td>
<td>f</td>
<td>2</td>
</tr>
<tr>
<td>Materials Velocity (m/s)</td>
<td>v</td>
<td>5920</td>
</tr>
<tr>
<td>Reference Echo Type</td>
<td></td>
<td>BWE / Known Reflector (FBH)</td>
</tr>
<tr>
<td>Reference Reflector Diameter (mm)*</td>
<td>s_{ref}</td>
<td>N/A</td>
</tr>
<tr>
<td>Reference Reflector Beam Path (mm)</td>
<td>d_{ref}</td>
<td>500</td>
</tr>
<tr>
<td>Indication Beam Path (mm)</td>
<td>d_{ind}</td>
<td>300</td>
</tr>
<tr>
<td>Indication dB difference to reference</td>
<td>G</td>
<td>-18</td>
</tr>
</tbody>
</table>

Calculations:

- **Wavelength (mm)**
 \[\lambda = \frac{V}{f} \]
 \[2.96 \]

- **Near Zone (mm)**
 \[N_c = \frac{d_c^2}{4\lambda} \]
 \[49 \]

- **Reference Position Near Zones**
 \[D_{ref} = \frac{d_{ref}}{N_c} \]
 \[10.3 \]

- **Indication Position Near Zones**
 \[D_{ind} = \frac{d_{ind}}{N_c} \]
 \[6.2 \]

- **Reference Reflector Relative Size**
 \[S_{ind} = \frac{s_{ref}}{d_c} \]
 \[N/A \]

Plot Both Positions on Graph

- **Reference Position**
 Reference x = 10.3, y = -16.5
- **Indication Position**
 Indication x = 6.2, y = -34.5

Determine Indication Relative Size from Graph

- **S_{ind}**
 \[\text{Approx 0.25} \]

Calculate FBH Size

- **$d_f = S_{ind} \times d_c$**
 \[\text{Approx 6mm} \]

Not applicable when using BWE as reference